Trabajo práctico N° 8 bis

Programación de la MCBE, traducción, y ejecución

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: Comprender cómo realizar una traza de un programa en lenguaje ensamblador, y el proceso de ensamblado.

Recursos bibliográfico:

• Andrew S. Tanenbaum. Organización de computadoras: un enfoque estructurado. Cuarta edición, editorial Pearson Educación, 2000. ISBN 970-170-399-5.

Lectura propuesta:

Apunte de la materia. Capítulo 7: El software. Sección 7.1 y 7.2. Disponible en: https://ic.fi.uncoma.edu.ar/uploads/misc/apunte_ic.pdf

Modelo Computacional Binario Elemental (MCBE)

- 1. Escriba un programa en ensamblador del MCBE que lea un número desde la entrada, y muestre por pantalla el doble de ese número.
 - a) Traduzca el programa desarrollado en el punto anterior a código máquina de MCBE.
 - b) Realice la traza del ejecutable creado en el paso anterior.
 - c) Modifique el programa para que se imprima el cuádruple del número ingresado ¿Cuántas lineas se modificaron en lenguaje ensamblador? ¿Cuántas lineas se vieron modificadas en el lenguaje máquina?
- 2. Escriba un programa en ensamblador del *MCBE* que lea dos números desde la entrada, e imprima el primero la cantidad de veces indicada por el segundo.
 - a) Traduzca el programa desarrollado en el punto anterior a código máquina de MCBE.
 - b) Realice la traza del ejecutable creado en el paso anterior.
- 3. Escriba un programa en ensamblador del MCBE que lea dos números desde la entrada y muestre por pantalla el resultado de su multiplicación.
 - a) Traduzca el programa desarrollado en el punto anterior a código máquina de MCBE.
 - b) Realice la traza del ejecutable creado en el paso anterior.

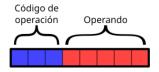
Anexo

Op.	Código de	Operando	Descripción
	operación		
	3 bits	5 bits	
LD	010	dirección	$Memoria \rightarrow Acumulador$. Copia un byte desde la
			dirección de memoria al acumulador.
ST	011	dirección	Acumulador → Memoria . Copia el contenido del
			acumulador en esa dirección de memoria.
ADD	100	dirección	Suma. El contenido de la dirección se suma al acumu-
			lador, y el resultado se almacena en el acumulador.
SUB	101	dirección	Resta. El contenido de la dirección se resta al acumu-
			lador, y el resultado se almacena en el acumulador.
JMP	110	desplazamiento	Salto incondicional. Se suma (en complemento a 2)
			el desplazamiento al PC .
JZ	111	desplazamiento	Salto condicional. Si el acumulador es cero, se suma
			(en complemento a 2) el desplazamiento al PC , en caso
			contrario el PC se incrementa en uno.
HLT	001	(sin uso)	Detiene la maquina. No se ejecutan nuevas instruc-
			ciones. Los registros y la memoria quedan con el último
			valor que tenían.
NOP	000	(sin uso)	No operación. No tiene ningún efecto sobre el acu-
			mulador ni memoria. El PC se incremente en uno.

Memoria: consta de 32 posiciones de 8 bits. Las direcciones 0 a 29 corresponden a direcciones que pueden ser escritas y leídas. La dirección 30 es de sólo lectura, permite leer datos del dispositivo de entrada, por ejemplo un teclado. La dirección 31 es de sólo escritura, permite escribir datos en el dispositivo de salida, por ejemplo en una pantalla o una impresora.

Registro PC: registro de 8 bits, contiene la dirección de la próxima instrucción a ejecutar. Se inicializa en cero.

Registro IR: registro 8 bits donde se guarda la instrucción que se esta decodificando o ejecutando.


Registro acumulador: registro de 8 bits donde se almacena un número entero representado en *complemento a 2*.

Etiquetas predefinidas:

IN: dirección 30, entrada, dirección de solo lectura.

OUT: dirección 31, salida, dirección de solo escritura.

Instrucciones: de 8 bits, los 3 bits más significativos almacenan el código de operación, y los 5 menos significativos almacenan el operando.

